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Dynamics of coupling functions in globally coupled maps: Size, periodicity, and stability of clusters
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It is shown how different globally coupled map systems can be analyzed under a common framework by
focusing on the dynamics of their respective global coupling functions. We investigate how the functional form
of the coupling determines the formation of clusters in a globally coupled map system and the resulting
periodicity of the global interaction. The allowed distributions of elements among periodic clusters is also
found to depend on the functional form of the coupling. Through the analogy between globally coupled maps
and a single driven map, the clustering behavior of the former systems can be characterized. By using this
analogy, the dynamics of periodic clusters in systems displaying a constant global coupling are predicted; and
for a particular family of coupling functions, it is shown that the stability condition of these clustered states can
straightforwardly be derived.
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I. INTRODUCTION functional form of the global coupling.
Section Il contains a description of the dynamics of dif-

There has been much interest in the study of the collectivéerent global coupling functions in GCM systems and a cal-
dynamics of chaotic systems subjected to global interactiongulation of the possible periodicities and cluster sizes when
Such systems arise naturally in the description of arrays ofwo clusters emerge in these systems. The driven map anal-
Josephson junctions, charge density waves, multimode 1429y is employed in Sec. lll to interpret the clustering behav-
sers, neural dynamics, evolutionary, chemical, and social neor of GCM systems. In Sec. IV the dynamical properties of
works [1-5]. The globally coupled mapGCM) lattice [6] periodic clusters in systems exhibiting a constant global cou-
constitutes a prototype model for such global-coupling dy-Pling are predicted; and for a particular family of global cou-
namics. It has recently been argued that GCM systems yielling functions, the stability condition for these clustered
universal classes of collective phenom¢fih Specifically, a ~ States is derived in the Appendix. Conclusions are presented
GCM system can exhibit a variety of collective behaviorsin Sec. V.
such as clusteringi.e., the formation of differentiated sub-
sets of synchronized elements in the netwd8, nonstatis- [l. DYNAMICS OF GLOBAL COUPLING FUNCTIONS
tical properties in the fluctuations of the mean field of the
ensembld8], global quasiperiodic motiof9,10], and differ-
ent collective phases depending on the parameters of the SYS .. 1(i)=(1—€)f(x,(i))+ eH (X(1),%(2), . . . X(N)),
tem [9]. It has been shown that a GCM system is closely 1)
related to a single map subjected to an external drive and that
this analogy may be used to describe the emergence of clusterex,(i) gives the state of the elemen{i=1,2,... N)
ters in GCM systems in geometrical terfis]. at discrete timd, N is the size of the systeng, is the cou-

In particular, the phenomenon of clustering is relevant apling parameterf (x) describes thénonlineaj local dynam-
it can provide a simple mechanism for segregation, orderinggcs, which in the present article is chosen to be the quadratic
and onset of differentiation of elements in many physical andnap f(x)=1-rx2, and Hx(i),x(2), ... x(N))
biological systems. In addition to GCM systems, dynamicalis the global coupling function. We shall consider a
clustering has also been found in a globally coupledsRer  general class of global coupling functions oN
oscillators[12], neural network$13], and coupled biochemi- variables such that H(...x(), ... x(@(),...)
cal reactiong14]. The interest in this phenomenon has re-=H(... x(j), ... x(i), ...), Vi,j; that is,H is assumed
cently grown, since dynamical clusters have been observe@ be invariant to argument permutations. This property of
experimentally in an array of electrochemical oscillators in-the coupling function ensures that, at any time, each element
teracting through a global couplifd5]. of the globally coupled system is subjected to the same in-

In this paper, we investigate the process of cluster formafluence of the coupling term. Some examples of coupling
tion in general globally coupled map systems by focusing orfunctions belonging to this class are
the dynamics of their global coupling functions. In most
studies on GCM systems, the mean field of the network has 18 )
been used as the global coupling function. Here, we study H=(x)= N iZl (i), )
GCM systems subjected to different global coupling func- N
tions and show how they can be analyzed under a common N
framework. We investigate how the distribution of elements H=(f)= 1 > f(x(i)); (3)
among a few clusters and their periodicities depend on the N =1

Consider a general globally coupled map system
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The first two examples correspond to forward and back- -
ward mean field coupling, respectively, and they have beer -
widely used in GCM studies. The third global coupling func- 0.0~
tion is the usual dispersion or mean square deviatioM of -
variables, and it may describe systems whose elements d -

not interact when they are synchronized. This kind of global oot s e o s

interaction might be relevant in some biological or social '

systems where the members of a community are driven by

their deviations from the mean behavior. The last example is 10

the geometric mean. This type of multiplicative coupling oc- P 6@ (b) -

curs, for instance, in a system &f sequential amplifiers "
where the gain of elemeiis a function of the magnitude of i
its statex,(i), andH is proportional to the total gain of the i
system. Many statistical functions &f variables share the 05— 7
property of invariance under argument permutations and the)m_ - 7

could as well be taken as global coupling functions in GCM s oot . . . + . . AH=C 4
systems given by Eq1). - 1

For some range of its parameters the GCM system in Eq - ]
(1) reaches an asymptotic collective behavior characterizec 00— -
by the segregation of the elements it€cclusters, each ex- - q

i~ : @ =05
hibiting a periodP, where thekth cluster has a numbé¥, of L 0@ P :

elements, with2K_,N,=N. The fractionp, of elements in 2001 2003 2005 2007 005

thekth cluster isp,=N,/N. The evolution of the&th cluster ¢

may be described by a variabjg(k) that gives the common o

state of theN, elements belonging to this cluster at time  FIG. 1. Dynamics of the couplingl=x (triangles in a GCM

t. The periodic orbit adopted by the stajg(k) of the  system, Eq.(l), with parameters =1.7, €=0.2, displaying two

kth cluster can be expressed as a sequence Pof clusters, each i_n period two. Cluster orbits arg/(1)

values [x1(K),x2(K), ... xp(K)]. The specific partition =[xa(1).x2(1)] (circles andx.(2)=[x1(2).x2(2)] (squares (&)

{P1.P2, ... px} into K clusters and the specific values For.the partltlgnp:p1=0.4 andp,=0.6, H follows a period-two

taken by the periodic orbit of each cluster depend on initiaffotion adopting the valugsH, ,H,]. (b) For (p=0.5), the two-

conditions and parameters of the system. clu§ters evolve out of phase with respect to each othertame-
When a GCM system falls inté periodic clusters, the Mans constant at the value=C=0.3037.

coupling functionH also shows a periodic motion. As an o

illustration of this behavior, Fig. (&) shows a typical situa- H=x=|x:(1)[P| x¢(2)] ¢~ P. 9)

tion in which a GCM system, with global coupling function

H=x, displays two clusters, each in period two. In this caseWhen the GCM system reaches a two-cluster state, the dy-

the coupling function follows a period-two motion. namics of the system reduces to the two-coupled maps
Collective states consisting of two clusters have recently
been observed in an experimental array of globally interact- Xte1(D)=(1—€)f(xy(1))+ €H, (10

ing chemical elementsl5]. This clustered collective state is
interesting to analyze in globally coupled maps. In this A
simple situation, there is a fractiop of elements in one Xi+1(2) = (1= €)T(x(2)) + eH,
cluster and a fraction (£p) in the other cluster. Thus the )
global coupling functions from Eq$2)—(5) simplify to: where H=H(x(1),x:(2),p) is the reduced, two-cluster
coupling function, as in Eqg6)—(9). If both cluster states
H=(x)= 1)+ (1— 2), 6 x1(1) andy(2) fall in period-two orbits, the coupling func-
(0=pPx(1)+(1=P)xi(2) © tion H follows, in general, a period-two motion, as shown in
Fig. 1(a), althoughH may become constant in some circum-

(11)

H=(f)=pf(x:(2))+(1-p)f(x«(2)), (M stanceqsee Fig. 1) and Sec. I\l. Let H; andH, be the
values adopted alternatively in time Iby in its period-two
H=Ax=p(1-p)[ xt(2)— x(1)7% (8)  orbit for a given partitiof p,1— p}, as indicated in Fig. ().
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displays states withl; =H,, that is, even when the two clus-
ters in period two may have different sizes, this particular
global coupling always reaches a stationary value. The
curves for the other coupling functions are symmetrical with
respect to the diagonal in Fig(l®, which they cross fop
=0.5. On the diagonal, the coupling functions are constant
and the two-clusters evolve out of phase with respect to each
other(Sec. V.

Note also that the different global coupling functions per-
form a period-two motion only on a restricted region of the
plane H,,H>,). It will be shown in Sec. Il that period-two
orbits of any permutable coupling function will fall within
the dashed contour in Fig. 2.

In general, a coupling functionl of a GCM system in a
collective state of two clusters can reach various asymptotic
periodic orbits for appropriate initial conditions. Each Fig.
o o T 3(a)-3(d) shows the regions on the space of parameters
**I'(b) e 25 0,/ (p,€) for which a coupling functiorH of a GCM in a two-

———— o / cluster state displays different periodic motions. The local
. parameter is fixed at=2. Figures 8a) and 3b) correspond
1 to the backward and forward mean field coupling, respec-
- tively. Note the very different distributions of periodic re-
i gions for the coupling functions in Figs(& and 3b). It
/ should be noticed that, besides the collective periodic states
/ H p-range | for two clusters shown in Figs.(8—-3(d), there can exist
f o [0aTs.06%5] other states in a GCM system consisting of more than two
<f> [0.445,0.555] — . .
X /s rooo0000) periodic clusters for the same values of the parametarsl
0 % [0.895.0.605] €, but corresponding to different initial conditions.
S 7 The inverse problem of determining the global coupling
e o 55 o5 function in experimental systems is relevant since in general
H, the specific functional form of the acting coupling is not
known. This can be a complicated problem because, in addi-

FIG. 2. () Curves of period-two orbittH,,H,] on the plane  tjon, the exact form of the local dynamics may not be ex-
(H1,Hy) asp varies for the four coupling functions, Eq€)—(9),  tracted in most situations. However, if the local dynamics is
in corresponding GCM systems displaying two clusters. Para_meteq@nown some insight on the functidt of a globally coupled
are the same for the four systems; 1.7, e=0.2. The boundaries  gystem can be gained within the framework presented here.
of the region where period-two orbits of any permutablemay 4, example, in the case of a dynamical system showing two
take place is indicated with dashed lin€és) Magnification of(a). period-two clusters with partitiop, the resulting asymptotic
Labels identify the curve associated to eadhand the numbers rbit [H,,H,] can be obtained by measuring the cluster or-
besides the marks along each curve indicate the corresponding V'cb_its and l;Sing Eq€10) and(11). For different realizations of
ues of the cluster fractiop. The range of possible values pffor o ' .
the different curves is also displayed on the figure. partitionp, the curve[H;,H,] can be drawn as a function of

p on the planeld,,H,), and compared with curvési; ,H,]
The valuesH; andH, depend oni) the functional form of cqrresponding to known functional fornksuch as those in
H, (ii) the parameters of the GCM system, Et), and(iii)  Fig. 2.
the fractionp.
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Consider then several GCM systems with the same pa- Il. DRIVEN MAP ANALOGY
rameters =1.7 ande=0.2 but with different coupling func- _ _ _
tions such as those in Eq&)—(5). Two clusters in period As shown in Ref[11], the clustering behavior of GCM

two can emerge in each of these systems for some range 8yStems can be analyzed through its analogy with the dynam-
the fractionp. The resulting asymptotic orbifH,H,] of  iCS of a single map subjected to an external drive. In order to
the respective coupling functions are shown in Fig) 2asp  interpret Fhe resu_lts of the preceding section, let us consider
varies, giving rise to a curve in each case. Note that eacAn associated driven map

function H possesses period-two orbits only for a limited

range of the fractiop. Figure 2b) is a magnification of Fig. Si+1= (1= €)f(s) +ely, (12

2(a), which shows that the dynamics of the backward and the

mean field coupling functions become equal ot 0.5, i.e.,  wheres; is the state of the map at discrete timé(s;) is the
when the two clusters have equal sizes. In this case, bottame local dynamics as in E@l), and L, is an external
coupling functions reach the constant valie=H,=0.365.  driving term assumed to be periodic with periBdWe de-
Notice that the dispersion coupling functiod,=Ax, only  note the sequence &f values adopted by the periodic drive
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FIG. 3. Regions of periodic motions on the plang ) for different couplingsH in GCM systems displaying two clusters. Local
parameter is fixed at=1.7. The numbers on each region indicate the period of that region(a) H=(x). (b) H=(f). (c) H=Ax; 1A:
there is only one stationary cluster with constbht 0 along the linep=0, bistability occurs on the edge-shaped region: a state of one
stationary cluster withd =0 coexist with a state of two out of phase clusters with constant, nonvanishibB: there are two out of phase

clusters giving constari # 0. (d) H=x.

Ly by [L1,Lz, ... Lp]. The analogy between a GCM sys- reach a number of distinct asymptotic responsg$), (j
tem and a driven map arises because in the former systemy > . 3) all with the same period, and depending on
[Eq. (1)] all the elements are affected by the global couplinginjtia| conditions. The orbits ofs, with period M can be
function in exactly the same way at all times, and therefore

; .. ; . expressed as a sequence of vali®s$]),s.(j), - . . su(i)].
the behavior of any elememt(i) in the GCM is equivalent ;
to the behavior of a single driven magq. (12)] with L, The correspondence between a GCM sysl&m. (1)] in a

—H and initial conditions, =x(i). Additionally, if a GCM state ofK clusters with period® and its associated driven
0 (o) . ’

system reaches a clustered, periodic collective state, its cof?@P[EQ. (12)] can be established whed =P andJ=K.

responding coupling functioH follows in general a periodic Using this analogy, the main features in Fig. 2 can now be

motion. Thus the associated driven migy. (12)] with a explamed. In terms of a driven map subjected to a period-

periodic driveL, should display a behavior similar to that of two driveL{=[Ly,L,] and the same parameters 1.7 and

an element belonging to a periodic cluster in the GCM sys€=0.2 as in the GCM systems considered in Fig. 2, the

tem. In particular, periodic drives resulting in periodic orbits bounded region on that figure contains the valuek pand

of S in Eq (12) may be emp|oyed to predict the emergencel_z for which the driven mas; jUSt possesses two distinct

of clustered, periodic states in a GGEq. (1)], regardless of asymptotic orbits = 2) of period two M =2), denoted by

the specific functional form of the global couplig and  [s1(1),5,(1)] and[s1(2),5,(2)]. For values ofL; andL,

without doing direct simulations on the entire GCM system.outside this diamond shaped region, the nsapmay also
The driven map is multistable; i.e., there can exist severateach a number of asymptotic periodic orbits but none with

attractors for the same parameter valuesde. Specifically, bothJ=2 orM=2, at least on the intervat 1<L,,L,<1.

for a given periodic drivgéL,,L,, ... ,Lp], the maps, may  Because of the analogy drawn above, all period-two motions
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[H;,H,] of permutable coupling functions in GCM systems (15), can also be predicted by this method. Similarly, the
given by Eq.(1) with r=1.7¢=0.2, and displaying two regions of period two in Figs.(d) and 3d) can be obtained
clusters in period two will fall on this bounded region of the by varying the parameter and calculating the interval qf
plane H;,H,). Equivalently, a collective state of two clus- for which Egs.(14) and (15) have solutions.

ters in period two can emerge in a GCM system only if its

global coupling function has an orlfi; ,H,] with values IV. PREDICTION AND STABILITY OF CLUSTERS IN

H,=L, andH,=L, contained within the bounded region of SYSTEMS WITH CONSTANT GLOBAL COUPLING

Fig. 2. The boundaries of that region vary as the parameters ) ) )

r ande are changed. It is out of the scope of the present work Another simple clustered collective state in GCM systems
to establish how the bounded region for two clusters in pe@ccurs when the coupling functiod remains constant in
riod two, as well as other regions for different clustered,time, i.e.,H=C. This behavior may take place in a GCM
periodic states, depend on parameters. However, it is worthyStém with a permutable coupling function whewelusters,
noticing that this dependence can serve to characterize GCRACh having\/K elements and periol, are evolving with
systems with permutable coupling functions, and that this_shlfted phases in order to yield a constant valueHoiThat

characterization can be obtained by the sole use of an asst- iIf the periodic orbits oK identical-size clusters are cycli-
ciated driven map. cally permuting in time, the resultingl becomes constant.

The analogy between a GCM system with a given cou0r those collective states, the behavior of any of such clus-
pling function H in a two-cluster state and an associatedters in the GCM system can be emulated by an associated
driven map can be carried further by defining an associate@lliven map subjected to a constant forclng C [16]. In the

coupling function[11] case of a GCM displaying two equal size clusters in period
two, this situation corresponds to the intersectiorHofvith
O,=H(s(1),5(2),p), (13) the diagonal in Fig. 2. The cluster orbits are then related as

xt(1)=[x1(1).x2(1)]=[a,b] and x:(2)=[x1(2) x2(2)]
that is, ®, is similar to the reduced two-cluster coupling =[b,a]. On the other hand, the associated driven map with
function, such as Eq$6)—(9) but with the argumentg(1) L,=C has a unique asymptotic period-two orbjt=[ a, 3]
andy,(2) from the cluster trajectories replaced by the drivenon a range ofC, where « and B8 are functions ofC. The
map orbitss,(1) ands,(2). Theassociated coupling function associated coupling functiddy also simplifies in such case.
links the dynamics of clusters in a GCM system to the dy-For the reduced, two-cluster couplings in E¢8)—(9), the
namics of a single associated driven map. The funclign ~ corresponding associated coupling functions become
depends on the functional form of the coupling functidn
on the partition{p,l—.pi among_the two'clusters in the ®<x>(a,,3)=;(a+,3), (16)
GCM, and on the orbits;(1) ands;(2), which themselves
are function of the period-two driie1,L,] and the param-
etersr ande. Thus for fixedr _and €, and a giverH, we have @<f>(a”3): E[f(a)_F f(8)], (17)
®,4=04(Lq,L,,p). The main point is that, an equivalence 2
between a GCM system E(l) in a two-cluster, period-two

state, and an associated driven map, #8), with a period- _ } B
two drive occurs when the following conditions are fulfilled: Oud@.B)=5 la—pl, (18
On(s1(1),5:(2),p)=Ly, (14 Ox(a,B)=al"4 |2 (19
04,(5,(1),5,(2),p)=L. (15) Then Egs(14) and(15) with L;=L,=C reduce to the single
R 2 equation
Equations(14) and (15) constitute a set of two nonlinear Ou(a,B)=C, (20

equations fot ; andL,, for a givenp. The solutio{ L7 ,L3]
of Egs. (14) and (15 predicts that the GCM possesseshich can be seen as an equation ®rfor given values of

a state cha_racitenzed by the coupling function motionhe narameters andr. The solutionC=C, of Eq. (20)
[Hi=L7 ,H,=L3] and cluster orbits [x1(1).x2(1)]  provides a complete description of the GCM state since then
=[s1(1),52(1)], [x1(2).x2(2)]1=[51(2),52(2)]. The suc- a=a(C,),b=p(C,), andH=C, . Figure 4 shows the bi-
cession of solution§Ly ,L3 ], asp varies, yields the curve furcation diagram of,, Eq.(12), as a function of the con-
corresponding to a giveld in Fig. 2. Thus, each curve on the stant driveL,=C up to period two, with fixed parameters
plane H,,H,) is parametrized by the fraction Moreover, =2 ande=0.4. The fixed point region in this diagram cor-
there exist solutionL} ,L%] to Egs.(14) and(15) only for ~ responds to one stationary clustee., a synchronized col-
an interval ofp. Therefore, the curves in Fig. 2 can, in prin- lective statg¢ in the GCM, Eq.(1), with constantH. The
ciple, be calculatedh priori by using an associated driven period-two window corresponds to the values and 3
map and just the specific functional form ldfin each case. adopted by the driven map on this range@®fOnce «(C)
The range of possible cluster sizes, described by the valuemdB(C) are known from the bifurcation diagram, the func-
of the fractionp for which exist solutions to Eqg14) and tion ®4(C) associated to any global coupling function in a
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FIG. 4. Bifurcation diagram of the driven map, Eq.(12), with
L,=C, as a function ofC. The asymptotic orbits 0§, are drawn
with solid lines. The valuea and B on the period-two window of
the driven map are indicated;= 8 on the fixed point window. The
associated coupling function®, from Eqgs. (16)—(19) are also
shown vsC. The intersections with the diagon@l,=C are indi-
cated by black dots and they correspond to the solutinsf Eq.  ditions are chosen very close to that state. What is observed,
(20). instead, is the evolution of the GCM system towards either

the stationary one cluster state witkix=0 or the two-

GCM can be readily obtained, assuming that the GCM is irfluster, period-two state withx=0.25. Thus, in addition to

a state of two equal size clusters=£0.5), evolving out of P€ing predicted by the solutions of the equattop=C, the
phase with respect to each other. In Fig. 4, &he functions observed clustered states of_a GCM d|splay|ng constant cou-
associated to the four global couplings in E6®—(5) with pling must bg stable, which implies some stab;llty condition
fixed e are shown as function oF. As stated above, the ©n the solutions. It can be SNhOV\(Bee Appendik that for
solutionsC, to Eq. (20) correspond to states in GCM sys- couPling functions satisfying—,0H/9x; =0, the condition
tems with a coupling function reaching a stationary valued®n/dC>1 at the intersection with the diagonal implies
H=C, . Thus, the intersections of th®,, curves with the that the correspon(_jmg solution is unstable. Th|_s is the case
diagonal in Fig. 4 give all the possible states of GCM sys-Of the global couplingd=Ax. Note that the solution &,
tems that maintain a constaH, either with one stationary = 0-083 is the only one for whicd®/dC|c_>1 in Fig. 4
cluster (if the intersection occurs on the fixed point window and therefore it is unstable, independently of the cluster frac-
of the bifurcation diagram of,) or with two clusters in tion p. For the couplindd=(f), a stability analysis of states
period two(if the intersection occurs on the period two win- consisting of two or three clusters in period three has been
dow of the diagram Note that both the backward and the performed by Shimada and Kikuchil7]. However, the
forward mean field couplings have the same two-clustersimple criterium for instabilit)d®/dC|c*>1 does not apply
period-two  solution(x)=(f)=C, =0.416, but these cou- for H=(f).

plings have different functional dependence on the constant Constant coupling functions may also occur in GCM sys-
drive L;=C. The coincidence of the couplings) and(f)  tems with different cluster sizes, that is the case of a GCM
for p=0.5 was already seen in Fig(. Similarly, the geo-  possessing dispersion global coupliig Ax and displaying
metric mean couplingH=x gives only one two-cluster, two clusters with any partitiofip,1— p}, as seen in Fig.(b).

period-two solution ak=C, =0.305. In contrast, the disper- Figur_e 5 shows the associated functi®n, with fixed € as a
sion global couplingH = Ax, has three intersections with the funcpon of the constant driv€ for several values of the
diagonal: one corresponds to the synchronized stationajaction p. There exist a critical fractiomp,=0.25 below
state in the associated GCM, wittk=C, =0, and the other which only one solution corresponding to one stationary
two correspond to different clustered states of the GCMCluster, i.e., synchronization, can appear in the GCM system.
each consisting of two equal size clusters in period two, witfA\Pove this critical fraction, two states, each consisting of
Ax=C,=0.083 andAx=C, =0.25, respectively. All the WO glusters in period two, are addmonal]y predicted by the
states predicted by the intersections of the diffe@ptwith ~ SolutionsC=C, of @,,=C. These solutions emerge as a
the diagonal in Fig. 4, except one, are readily found in simuair: one solution is always unstable simt®/dC|c >1
lations on the corresponding GCM systems for appropriatethere, and the other is the one two-cluster, period-two collec-
initial conditions in each case. Actually, for a GCM with the tive state with constamix that is actually observed in simu-
couplingH = Ax, the predicted two-cluster, period-two state lations on the corresponding GCM system. For the fraction
with Ax=C, =0.083 is unstable: it is never achieved in p.=0.25, there is a two-cluster, period-two soluti@h,
simulations on the GCM system, even when the initial con-=C, =0.125 that is marginally stable.

FIG. 5. The associated coupling functién,, vs C for different
values of the fractiomp. The critical fraction isp,=0.25. Intersec-
tions with the diagonal give the solutios, . Solutions for which
d®/dC|c,>1 are unstable.
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V. CONCLUSIONS tained by clusters of different sizes. Our method based on

Most studies on GCM lattices and other globally coupledsi?uéﬁg)nglso predicts successiully the cluster states in these

systems have assumed mean field coupl_ing. Howgver,_ other The driven map analogy suggests that the emergence of

forms of global coupl!ng may be relevant in some S'tuat'onsclusters should be a common phenomenon that can be ex-

We have analyzed, in a general framework, the clusteringacied in various dynamical systems formed by globally in-

behavior in GCM systems subjected to permutable globaleracting elements possessing stable periodic orbits on some

coupling functions by considering the dynamics of the couparameter range of their individual dynamics. The examples

pling functions. presented here show that progress in the understanding of the
We have shown that different GCM systems can be repcollective behavior of globally coupled systems can be

resented by the orbits of their coupling functions on a com-achieved by investigating their relation to a driven oscillator.

mon space. For simplicity, only collective states in GCM

systems consisting of two clusters in period two were con- ACKNOWLEDGMENTS

sidered. We have shown that the functional form of the glo-

bal coupling in a GCM system determines the periodicity of ~ This work was supported by Consejo de Desarrollo Cien-

its motion and the possible distributions of elements amongifico, Humanstico y Tecnolgico of the Universidad de Los

the clusters. The existence of a well defined interval of posAndes, Meida, Venezuela.

sible partitions among two clusters, out of which no clusters

emerge in the system, has been observed experimentall appENDIX: ON THE RELATION BETWEEN STABILITY

[15]. In experimental or natural situations where clustering AND THE ASSOCIATED COUPLED FUNCTION

occurs, the specific functional form of the coupling is in ) )

general unknown. The present study may be useful to obtain Consider a general GCM system with any global permut-

insight into the acting global coupling function in practical @ble coupling function. Suppose that the system reaches a

situations. state consisting of two clusters. Then the dynamics of the
We have employed a previously introduced analogy besystem reduces to two coupled maps Hg§)—(11), i.e.,

tween a GCM system and a single externally driven fidp

in order to give a unified interpretation of the observed clus- Xt+1(1)=(1—€)F(xi(1))+ eH(x(1),x:(2),p)

tering behavior of the GCM systems considered in this ar- = FOu(D)ox(2))

ticle. A periodically driven map with local periodic windows X L)X e)),

can display multiple asymptotic periodic responses that are

similar to cluster orbits in a GCM system with permutalle xt+1(2) = (1= ) F(x(2))+ eH (1), x1(2),p)

This analogy implies_ that dynamical Cluster_ing can occur in =G(x(1),x:(2)). (A1)

any GCM system with a permutable coupling function and

periodic windows in the local dynamics. The presence of f the two clusters are in period-two orbits, the stability of

windows of stable periodic orbits in the local map is essenyhis collective state in the GCM is given by the eigenvalues
tial for the emergence of clusters. In fact, no clustering isy¢ the product of Jacobian matrices

observed in a GCM system if the local maps do not have

periodic windowd 18], what is observed instead is synchro- 9F 9F

nization or nontrivial collective behavior, i.e., an ordered

temporal evolution of statistical quantities coexisting with 2 | 9xi(1) 9xi(2)

local chaos. J=J1dp= H : (A2)
The associated coupling function derived from the driven = 9G 96

map analogy is particularly simple to use in the prediction of axi(1) Ixi(2)

clustered states in GCM systems with two equal size clusters

and exhibiting constant global coupling=C. The associ- If the two clusters move out of phase, the asymptotic

ated coupling functior®,, can be directly constructed from state of the GCM can be described by the two orbits
the bifurcation diagram of the steadily driven map. The clus-x;(1)=[x1(1).x2(1)]=[a,b] and x(2)=[x1(2),x2(2)]

ter states are obtained from the solutions of @) and can  =[b,a], which satisfy

be represented graphically in a simple way. Although Eg.

(20) has been used for the case of two clusters in period two, b=(1-¢)f(a)+eH(a,b,p),

it can also be applied to find GCM states consistingkof

equal size clusters in period. In addition, the associated a=(1—e)f(b)+eH(a,b,p). (A3)

coupling function® carries information about the stability
of the predicted two-cluster states. In particular, for the fam-  For the local dynamic$(x)=1-rx?, one gets
ily of coupling function satisfying propert§A9), the stability

condition of clustered states in a GCM with constait —2(1-e)ra+eH, eH,

=C, is directly given by the sIopeiG)H/dC|C*. The ex- J =

ample of a GCM system with dispersion coupling function eH, —2(1—€)rb+eH,
H=Ax reveals that a constant coupling can also be main- (A4)
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—2(1—e)rb+eH, eH, where
\]2:
eHy —2(1-e)rateH, _ —1+R
(A5) T 2r(e—1) (AL3)
where
_ IR A14
_ S 2r(e—1)’ (Al4)
a Ixi(1)
1)=a,x;(2)=b
Xt( ) aXt( ) and
_dH(x(1),xi(2)) A6
ST . (A§) R=(—3—4r 2C+4r eC+4r —8r e+ 4r ) 12
xi(1)=b.x(2)=a (A15)
and Since
H _IHO(1), x:(2)) ; P LR
=" oy a €
X mman@es € i zwenac rR MO
IH(x(1),x:(2))
ST o) : (A7) then
t x()=b.x(2)=a
Consider now the dispersion coupling function, E§. This @: _ f(@_ ‘9®) (A17)
coupling belongs to the family of functions of variables dC Rida B
Since O ,, has the same functional form &$=AX, then
H(X1, X2, ... ,XN):; he(Xi—(x}), (A8)  @,, also satisfies propert§A10), that is,
where h, is any even function of its argument. It can be 05 904
straightforwardly shown that this family of functions pos- E B’ (A18)
sesses the property
N and therefore
2 Moo (A9)
=1 9% 0 00y 2€ 90,
(Al19)

Therefore, in a two-cluster state, amy in this family of dc R Ja
global coupling functions satisfies i i i

Let C=C, be a value ofC corresponding to the intersection
AH(xe(1),x:(2))  dH(x(1),x:(2)) of ®,, with the diagonal in Fig. 4. Them(C,)=a and
=0. (Al0) p(C,)=Db; and®,,(C,)=H(a,b), which gives

axi(1) Ix(2)
If the two-clusters evolve out of phase with respect to each dOsy| B EH (A20)
other, and additionally the GCM has a couplidgvith prop- dcC c R ¥
erty (A9), then the two eigenvalues of the matdxin Eq. *

A2) become identical and their value is . .
(A2) Using the fact thaH ,= —H,, from Eq.(A10), the eigenvalue

A=2re(e—1)(aH,+bH,) +4r2ab(e—1)2. (A1l) A becomes

The stability criterion of this state is given by the modulus of AN=2re(e—1)H, (b—a)+4r2ab(e—1)2. (A21)
the eigenvalue\, that is,[\|>1 (|\|<1) implies that the
state is unstabléstable. The valuesa andb are, respectively, Equation(A13) and(A14) with C= C, give the values and
the values ofx and g at the intersection of the functidf,, b, respectively. Then, substitution of these values &hd
with the diagonal in Fig. 4. from Eq. (A20) in Eq. (A21) yields

Let us analyze the relationship between the eigenvalue
and the derivativel® ,,/dC at the intersection points with

de
the diagonal in Fig. 4 or Fig. 5. In general, A=R? =

ac | 1t

*

+1. (A22)

C
d® 40 da 40 48

dC~ da oC 3B aC’ (A12)

Therefore, the conditiond@/dc|c*>1 implies that
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[\|>1, and thus the two-cluster, period-two solution d@/dC|C*>1, are unstable.

with C, =0.07 given by the intersection & ,, with the Note that the above stability result fot=Ax is also
diagonal in Fig. 4 is unstable. Similarly, the solutiddg of  valid for any global coupling function satisfying property
0®,,=C for the different curves in Fig. 5 for which (A9).
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