
PHYSICAL REVIEW E, VOLUME 64, 036224
Dynamics of coupling functions in globally coupled maps: Size, periodicity, and stability of clusters

M. G. Cosenza and A. Parravano
Centro de Astrofı´sica Teo´rica, Facultad de Ciencias, Universidad de Los Andes, Apartado Postal 26 La Hechicera,

Mérida 5251, Venezuela
~Received 2 February 2001; published 30 August 2001!

It is shown how different globally coupled map systems can be analyzed under a common framework by
focusing on the dynamics of their respective global coupling functions. We investigate how the functional form
of the coupling determines the formation of clusters in a globally coupled map system and the resulting
periodicity of the global interaction. The allowed distributions of elements among periodic clusters is also
found to depend on the functional form of the coupling. Through the analogy between globally coupled maps
and a single driven map, the clustering behavior of the former systems can be characterized. By using this
analogy, the dynamics of periodic clusters in systems displaying a constant global coupling are predicted; and
for a particular family of coupling functions, it is shown that the stability condition of these clustered states can
straightforwardly be derived.
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I. INTRODUCTION

There has been much interest in the study of the collec
dynamics of chaotic systems subjected to global interactio
Such systems arise naturally in the description of arrays
Josephson junctions, charge density waves, multimode
sers, neural dynamics, evolutionary, chemical, and social
works @1–5#. The globally coupled map~GCM! lattice @6#
constitutes a prototype model for such global-coupling
namics. It has recently been argued that GCM systems y
universal classes of collective phenomena@7#. Specifically, a
GCM system can exhibit a variety of collective behavio
such as clustering~i.e., the formation of differentiated sub
sets of synchronized elements in the network! @8#, nonstatis-
tical properties in the fluctuations of the mean field of t
ensemble@8#, global quasiperiodic motion@9,10#, and differ-
ent collective phases depending on the parameters of the
tem @9#. It has been shown that a GCM system is clos
related to a single map subjected to an external drive and
this analogy may be used to describe the emergence of
ters in GCM systems in geometrical terms@11#.

In particular, the phenomenon of clustering is relevant
it can provide a simple mechanism for segregation, order
and onset of differentiation of elements in many physical a
biological systems. In addition to GCM systems, dynami
clustering has also been found in a globally coupled Ro¨ssler
oscillators@12#, neural networks@13#, and coupled biochemi
cal reactions@14#. The interest in this phenomenon has r
cently grown, since dynamical clusters have been obse
experimentally in an array of electrochemical oscillators
teracting through a global coupling@15#.

In this paper, we investigate the process of cluster form
tion in general globally coupled map systems by focusing
the dynamics of their global coupling functions. In mo
studies on GCM systems, the mean field of the network
been used as the global coupling function. Here, we st
GCM systems subjected to different global coupling fun
tions and show how they can be analyzed under a com
framework. We investigate how the distribution of eleme
among a few clusters and their periodicities depend on
1063-651X/2001/64~3!/036224~9!/$20.00 64 0362
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functional form of the global coupling.
Section II contains a description of the dynamics of d

ferent global coupling functions in GCM systems and a c
culation of the possible periodicities and cluster sizes wh
two clusters emerge in these systems. The driven map a
ogy is employed in Sec. III to interpret the clustering beha
ior of GCM systems. In Sec. IV the dynamical properties
periodic clusters in systems exhibiting a constant global c
pling are predicted; and for a particular family of global co
pling functions, the stability condition for these cluster
states is derived in the Appendix. Conclusions are prese
in Sec. V.

II. DYNAMICS OF GLOBAL COUPLING FUNCTIONS

Consider a general globally coupled map system

xt11~ i !5~12e! f „xt~ i !…1eH„xt~1!,xt~2!, . . . ,xt~N!…,
~1!

wherext( i ) gives the state of the elementi ( i 51,2, . . . ,N)
at discrete timet, N is the size of the system,e is the cou-
pling parameter,f (x) describes the~nonlinear! local dynam-
ics, which in the present article is chosen to be the quadr
map f (x)512rx2, and Ht„xt( i ),xt(2), . . . ,xt(N)…
is the global coupling function. We shall consider
general class of global coupling functions ofN
variables such that H„ . . . ,xt( i ), . . . ,xt( j ), . . . …
5H„ . . . ,xt( j ), . . . ,xt( i ), . . . …, ; i , j ; that is,H is assumed
to be invariant to argument permutations. This property
the coupling function ensures that, at any time, each elem
of the globally coupled system is subjected to the same
fluence of the coupling term. Some examples of coupl
functions belonging to this class are

H5^x&5
1

N (
i 51

N

xt~ i !, ~2!

H5^ f &5
1

N (
i 51

N

f „xt~ i !…; ~3!
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H5Dx5A1

N
(
i 51

N

@xt~ i !2^x&#2, ~4!

H5 x̄5)
i 51

N

uxt~ i !u1/N. ~5!

The first two examples correspond to forward and ba
ward mean field coupling, respectively, and they have b
widely used in GCM studies. The third global coupling fun
tion is the usual dispersion or mean square deviation oN
variables, and it may describe systems whose element
not interact when they are synchronized. This kind of glo
interaction might be relevant in some biological or soc
systems where the members of a community are driven
their deviations from the mean behavior. The last exampl
the geometric mean. This type of multiplicative coupling o
curs, for instance, in a system ofN sequential amplifiers
where the gain of elementi is a function of the magnitude o
its statext( i ), andH is proportional to the total gain of th
system. Many statistical functions ofN variables share the
property of invariance under argument permutations and t
could as well be taken as global coupling functions in GC
systems given by Eq.~1!.

For some range of its parameters the GCM system in
~1! reaches an asymptotic collective behavior character
by the segregation of the elements intoK clusters, each ex
hibiting a periodP, where thekth cluster has a numberNk of
elements, with(k51

K Nk5N. The fractionpk of elements in
thekth cluster ispk5Nk /N. The evolution of thekth cluster
may be described by a variablex t(k) that gives the common
state of theNk elements belonging to this cluster at tim
t. The periodic orbit adopted by the statex t(k) of the
kth cluster can be expressed as a sequence oP
values @x1(k),x2(k), . . . ,xP(k)#. The specific partition
$p1 ,p2 , . . . ,pK% into K clusters and the specific value
taken by the periodic orbit of each cluster depend on ini
conditions and parameters of the system.

When a GCM system falls intoK periodic clusters, the
coupling functionH also shows a periodic motion. As a
illustration of this behavior, Fig. 1~a! shows a typical situa-
tion in which a GCM system, with global coupling functio
H5 x̄, displays two clusters, each in period two. In this ca
the coupling function follows a period-two motion.

Collective states consisting of two clusters have rece
been observed in an experimental array of globally intera
ing chemical elements@15#. This clustered collective state i
interesting to analyze in globally coupled maps. In th
simple situation, there is a fractionp of elements in one
cluster and a fraction (12p) in the other cluster. Thus th
global coupling functions from Eqs.~2!–~5! simplify to:

H5^x&5px t~1!1~12p!x t~2!, ~6!

H5^ f &5p f„x t~2!…1~12p! f „x t~2!…, ~7!

H5Dx5Ap~12p!@x t~2!2x t~1!#2, ~8!
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H5 x̄5ux t~1!upux t~2!u(12p). ~9!

When the GCM system reaches a two-cluster state, the
namics of the system reduces to the two-coupled maps

x t11~1!5~12e! f „x t~1!…1eH, ~10!

x t11~2!5~12e! f „x t~2!…1eH, ~11!

where H5H„x t(1),x t(2),p… is the reduced, two-cluste
coupling function, as in Eqs.~6!–~9!. If both cluster states
x t(1) andx t(2) fall in period-two orbits, the coupling func
tion H follows, in general, a period-two motion, as shown
Fig. 1~a!, althoughH may become constant in some circum
stances@see Fig. 1~b! and Sec. IV#. Let H1 and H2 be the
values adopted alternatively in time byH in its period-two
orbit for a given partition$p,12p%, as indicated in Fig. 1~a!.

FIG. 1. Dynamics of the couplingH5 x̄ ~triangles! in a GCM
system, Eq.~1!, with parametersr 51.7, e50.2, displaying two
clusters, each in period two. Cluster orbits arex t(1)
5@x1(1),x2(1)# ~circles! andx t(2)5@x1(2),x2(2)# ~squares!. ~a!
For the partitionp5p150.4 andp250.6, H follows a period-two
motion, adopting the values@H1 ,H2#. ~b! For (p50.5), the two-
clusters evolve out of phase with respect to each other andH re-
mains constant at the valueH5C50.3037.
4-2
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The valuesH1 andH2 depend on~i! the functional form of
H, ~ii ! the parameters of the GCM system, Eq.~1!, and~iii !
the fractionp.

Consider then several GCM systems with the same
rametersr 51.7 ande50.2 but with different coupling func-
tions such as those in Eqs.~2!–~5!. Two clusters in period
two can emerge in each of these systems for some rang
the fractionp. The resulting asymptotic orbits@H1 ,H2# of
the respective coupling functions are shown in Fig. 2~a! asp
varies, giving rise to a curve in each case. Note that e
function H possesses period-two orbits only for a limite
range of the fractionp. Figure 2~b! is a magnification of Fig.
2~a!, which shows that the dynamics of the backward and
mean field coupling functions become equal forp50.5, i.e.,
when the two clusters have equal sizes. In this case,
coupling functions reach the constant valueH15H250.365.
Notice that the dispersion coupling function,H5Dx, only

FIG. 2. ~a! Curves of period-two orbits@H1 ,H2# on the plane
(H1 ,H2) asp varies for the four coupling functions, Eqs.~6!–~9!,
in corresponding GCM systems displaying two clusters. Parame
are the same for the four systems,r 51.7, e50.2. The boundaries
of the region where period-two orbits of any permutableH may
take place is indicated with dashed lines.~b! Magnification of~a!.
Labels identify the curve associated to eachH and the numbers
besides the marks along each curve indicate the corresponding
ues of the cluster fractionp. The range of possible values ofp for
the different curves is also displayed on the figure.
03622
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displays states withH15H2, that is, even when the two clus
ters in period two may have different sizes, this particu
global coupling always reaches a stationary value. T
curves for the other coupling functions are symmetrical w
respect to the diagonal in Fig. 2~b!, which they cross forp
50.5. On the diagonal, the coupling functions are const
and the two-clusters evolve out of phase with respect to e
other ~Sec. IV!.

Note also that the different global coupling functions pe
form a period-two motion only on a restricted region of t
plane (H1 ,H2). It will be shown in Sec. III that period-two
orbits of any permutable coupling function will fall within
the dashed contour in Fig. 2.

In general, a coupling functionH of a GCM system in a
collective state of two clusters can reach various asympt
periodic orbits for appropriate initial conditions. Each Fi
3~a!–3~d! shows the regions on the space of parame
(p,e) for which a coupling functionH of a GCM in a two-
cluster state displays different periodic motions. The lo
parameter is fixed atr 52. Figures 3~a! and 3~b! correspond
to the backward and forward mean field coupling, resp
tively. Note the very different distributions of periodic re
gions for the coupling functions in Figs. 3~a! and 3~b!. It
should be noticed that, besides the collective periodic st
for two clusters shown in Figs. 3~a!–3~d!, there can exist
other states in a GCM system consisting of more than
periodic clusters for the same values of the parametersr and
e, but corresponding to different initial conditions.

The inverse problem of determining the global coupli
function in experimental systems is relevant since in gen
the specific functional form of the acting coupling is n
known. This can be a complicated problem because, in a
tion, the exact form of the local dynamics may not be e
tracted in most situations. However, if the local dynamics
known some insight on the functionH of a globally coupled
system can be gained within the framework presented h
For example, in the case of a dynamical system showing
period-two clusters with partitionp, the resulting asymptotic
orbit @H1 ,H2# can be obtained by measuring the cluster
bits and using Eqs.~10! and~11!. For different realizations of
partitionp, the curve@H1 ,H2# can be drawn as a function o
p on the plane (H1 ,H2), and compared with curves@H1 ,H2#
corresponding to known functional formsH such as those in
Fig. 2.

III. DRIVEN MAP ANALOGY

As shown in Ref.@11#, the clustering behavior of GCM
systems can be analyzed through its analogy with the dyn
ics of a single map subjected to an external drive. In orde
interpret the results of the preceding section, let us cons
an associated driven map

st115~12e! f ~st!1eLt , ~12!

wherest is the state of the map at discrete timet, f (st) is the
same local dynamics as in Eq.~1!, and Lt is an external
driving term assumed to be periodic with periodP. We de-
note the sequence ofP values adopted by the periodic driv

rs

al-
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FIG. 3. Regions of periodic motions on the plane (p,e) for different couplingsH in GCM systems displaying two clusters. Loc
parameter is fixed atr 51.7. The numbers on each region indicate the period ofH on that region.~a! H5^x&. ~b! H5^ f &. ~c! H5Dx; 1A:
there is only one stationary cluster with constantH50 along the linep50, bistability occurs on the edge-shaped region: a state of
stationary cluster withH50 coexist with a state of two out of phase clusters with constant, nonvanishingH; 1B: there are two out of phas

clusters giving constantHÞ0. ~d! H5 x̄.
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Lt by @L1 ,L2 , . . . ,LP#. The analogy between a GCM sy
tem and a driven map arises because in the former sys
@Eq. ~1!# all the elements are affected by the global coupl
function in exactly the same way at all times, and theref
the behavior of any elementxt( i ) in the GCM is equivalent
to the behavior of a single driven map@Eq. ~12!# with Lt
5H and initial conditionso5xo( i ). Additionally, if a GCM
system reaches a clustered, periodic collective state, its
responding coupling functionH follows in general a periodic
motion. Thus the associated driven map@Eq. ~12!# with a
periodic driveLt should display a behavior similar to that o
an element belonging to a periodic cluster in the GCM s
tem. In particular, periodic drives resulting in periodic orb
of st in Eq. ~12! may be employed to predict the emergen
of clustered, periodic states in a GCM@Eq. ~1!#, regardless of
the specific functional form of the global couplingH and
without doing direct simulations on the entire GCM syste

The driven map is multistable; i.e., there can exist seve
attractors for the same parameter valuesr ande. Specifically,
for a given periodic drive@L1 ,L2 , . . . ,LP#, the mapst may
03622
m

e

or-

-

.
al

reach a number of distinct asymptotic responsess̄t( j ), ( j
51,2, . . . ,J), all with the same period, and depending
initial conditions. The orbits ofst with period M can be

expressed as a sequence of values@ s̄1( j ),s̄2( j ), . . . ,s̄M( j )#.
The correspondence between a GCM system@Eq. ~1!# in a
state ofK clusters with periodP and its associated drive
map @Eq. ~12!# can be established whenM5P andJ5K.

Using this analogy, the main features in Fig. 2 can now
explained. In terms of a driven map subjected to a peri
two drive Lt5@L1 ,L2# and the same parametersr 51.7 and
e50.2 as in the GCM systems considered in Fig. 2,
bounded region on that figure contains the values ofL1 and
L2 for which the driven mapst just possesses two distinc
asymptotic orbits (J52) of period two (M52), denoted by

@ s̄1(1),s̄2(1)# and @ s̄1(2),s̄2(2)#. For values ofL1 and L2
outside this diamond shaped region, the mapst may also
reach a number of asymptotic periodic orbits but none w
both J52 or M52, at least on the interval21<L1 ,L2<1.
Because of the analogy drawn above, all period-two moti
4-4
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@H1 ,H2# of permutable coupling functions in GCM system
given by Eq. ~1! with r 51.7,e50.2, and displaying two
clusters in period two will fall on this bounded region of th
plane (H1 ,H2). Equivalently, a collective state of two clus
ters in period two can emerge in a GCM system only if
global coupling function has an orbit@H1 ,H2# with values
H15L1 andH25L2 contained within the bounded region o
Fig. 2. The boundaries of that region vary as the parame
r ande are changed. It is out of the scope of the present w
to establish how the bounded region for two clusters in
riod two, as well as other regions for different clustere
periodic states, depend on parameters. However, it is w
noticing that this dependence can serve to characterize G
systems with permutable coupling functions, and that t
characterization can be obtained by the sole use of an a
ciated driven map.

The analogy between a GCM system with a given c
pling function H in a two-cluster state and an associat
driven map can be carried further by defining an associa
coupling function@11#

QH5H„s̄t~1!,s̄t~2!,p…, ~13!

that is, QH is similar to the reduced two-cluster couplin
function, such as Eqs.~6!–~9! but with the argumentsx t(1)
andx t(2) from the cluster trajectories replaced by the driv
map orbitss̄t(1) ands̄t(2). Theassociated coupling functio
links the dynamics of clusters in a GCM system to the d
namics of a single associated driven map. The functionQH
depends on the functional form of the coupling functionH,
on the partition$p,12p% among the two clusters in th
GCM, and on the orbitss̄t(1) and s̄t(2), which themselves
are function of the period-two drive@L1 ,L2# and the param-
etersr ande. Thus for fixedr ande, and a givenH, we have
QH5QH(L1 ,L2 ,p). The main point is that, an equivalenc
between a GCM system Eq.~1! in a two-cluster, period-two
state, and an associated driven map, Eq.~12!, with a period-
two drive occurs when the following conditions are fulfille

QH„s̄1~1!,s̄1~2!,p…5L1 , ~14!

QH„s̄2~1!,s̄2~2!,p…5L2 . ~15!

Equations~14! and ~15! constitute a set of two nonlinea
equations forL1 andL2, for a givenp. The solution@L1* ,L2* #
of Eqs. ~14! and ~15! predicts that the GCM possess
a state characterized by the coupling function mot
@H15L1* ,H25L2* # and cluster orbits @x1(1),x2(1)#

5@ s̄1(1),s̄2(1)#, @x1(2),x2(2)#5@ s̄1(2),s̄2(2)#. The suc-
cession of solutions@L1* ,L2* #, asp varies, yields the curve
corresponding to a givenH in Fig. 2. Thus, each curve on th
plane (H1 ,H2) is parametrized by the fractionp. Moreover,
there exist solutions@L1* ,L2* # to Eqs.~14! and~15! only for
an interval ofp. Therefore, the curves in Fig. 2 can, in pri
ciple, be calculateda priori by using an associated drive
map and just the specific functional form ofH in each case.
The range of possible cluster sizes, described by the va
of the fractionp for which exist solutions to Eqs.~14! and
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~15!, can also be predicted by this method. Similarly, t
regions of period two in Figs. 3~a! and 3~d! can be obtained
by varying the parametere and calculating the interval ofp
for which Eqs.~14! and ~15! have solutions.

IV. PREDICTION AND STABILITY OF CLUSTERS IN
SYSTEMS WITH CONSTANT GLOBAL COUPLING

Another simple clustered collective state in GCM syste
occurs when the coupling functionH remains constant in
time, i.e.,H5C. This behavior may take place in a GCM
system with a permutable coupling function whenK clusters,
each havingN/K elements and periodK, are evolving with
shifted phases in order to yield a constant value forH. That
is, if the periodic orbits ofK identical-size clusters are cycli
cally permuting in time, the resultingH becomes constant
For those collective states, the behavior of any of such c
ters in the GCM system can be emulated by an associ
driven map subjected to a constant forcingLt5C @16#. In the
case of a GCM displaying two equal size clusters in per
two, this situation corresponds to the intersection ofH with
the diagonal in Fig. 2. The cluster orbits are then related
x t(1)5@x1(1),x2(1)#5@a,b# and x t(2)5@x1(2),x2(2)#
5@b,a#. On the other hand, the associated driven map w
Lt5C has a unique asymptotic period-two orbits̄t5@a,b#
on a range ofC, wherea and b are functions ofC. The
associated coupling functionQH also simplifies in such case
For the reduced, two-cluster couplings in Eqs.~6!–~9!, the
corresponding associated coupling functions become

Q^x&~a,b!5
1

2
~a1b!, ~16!

Q^ f &~a,b!5
1

2
@ f ~a!1 f ~b!#, ~17!

QDx~a,b!5
1

2
ua2bu, ~18!

Q x̄~a,b!5uau1/2ubu1/2. ~19!

Then Eqs.~14! and~15! with L15L25C reduce to the single
equation

QH~a,b!5C, ~20!

which can be seen as an equation forC, for given values of
the parameterse and r. The solutionC5C* of Eq. ~20!
provides a complete description of the GCM state since t
a5a(C* ),b5b(C* ), andH5C* . Figure 4 shows the bi-
furcation diagram ofst , Eq. ~12!, as a function of the con-
stant driveLt5C up to period two, with fixed parametersr
52 ande50.4. The fixed point region in this diagram co
responds to one stationary cluster~i.e., a synchronized col-
lective state! in the GCM, Eq.~1!, with constantH. The
period-two window corresponds to the valuesa and b
adopted by the driven map on this range ofC. Oncea(C)
andb(C) are known from the bifurcation diagram, the fun
tion QH(C) associated to any global coupling function in
4-5
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GCM can be readily obtained, assuming that the GCM is
a state of two equal size clusters (p50.5), evolving out of
phase with respect to each other. In Fig. 4, theQH functions
associated to the four global couplings in Eqs.~2!–~5! with
fixed e are shown as function ofC. As stated above, the
solutionsC* to Eq. ~20! correspond to states in GCM sy
tems with a coupling function reaching a stationary va
H5C* . Thus, the intersections of theQH curves with the
diagonal in Fig. 4 give all the possible states of GCM s
tems that maintain a constantH, either with one stationary
cluster~if the intersection occurs on the fixed point windo
of the bifurcation diagram ofst) or with two clusters in
period two~if the intersection occurs on the period two wi
dow of the diagram!. Note that both the backward and th
forward mean field couplings have the same two-clus
period-two solution^x&5^ f &5C* 50.416, but these cou
plings have different functional dependence on the cons
drive Lt5C. The coincidence of the couplings^x& and ^ f &
for p50.5 was already seen in Fig. 2~b!. Similarly, the geo-
metric mean couplingH5 x̄ gives only one two-cluster
period-two solution atx̄5C* 50.305. In contrast, the dispe
sion global coupling,H5Dx, has three intersections with th
diagonal: one corresponds to the synchronized station
state in the associated GCM, withDx5C* 50, and the other
two correspond to different clustered states of the GC
each consisting of two equal size clusters in period two, w
Dx5C* 50.083 andDx5C* 50.25, respectively. All the
states predicted by the intersections of the differentQH with
the diagonal in Fig. 4, except one, are readily found in sim
lations on the corresponding GCM systems for appropria
initial conditions in each case. Actually, for a GCM with th
couplingH5Dx, the predicted two-cluster, period-two sta
with Dx5C* 50.083 is unstable: it is never achieved
simulations on the GCM system, even when the initial co

FIG. 4. Bifurcation diagram of the driven mapst , Eq.~12!, with
Lt5C, as a function ofC. The asymptotic orbits ofst are drawn
with solid lines. The valuesa andb on the period-two window of
the driven map are indicated;a5b on the fixed point window. The
associated coupling functionsQH from Eqs. ~16!–~19! are also
shown vsC. The intersections with the diagonalQH5C are indi-
cated by black dots and they correspond to the solutionsC* of Eq.
~20!.
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ditions are chosen very close to that state. What is obser
instead, is the evolution of the GCM system towards eit
the stationary one cluster state withDx50 or the two-
cluster, period-two state withDx50.25. Thus, in addition to
being predicted by the solutions of the equationQH5C, the
observed clustered states of a GCM displaying constant c
pling must be stable, which implies some stability conditi
on the solutions. It can be shown~see Appendix! that for
coupling functions satisfying( i 51

N ]H/]xi50, the condition
dQH /dC.1 at the intersection with the diagonal implie
that the corresponding solution is unstable. This is the c
of the global couplingH5Dx. Note that the solution atC*
50.083 is the only one for whichdQ/dCuC

*
.1 in Fig. 4

and therefore it is unstable, independently of the cluster fr
tion p. For the couplingH5^ f &, a stability analysis of state
consisting of two or three clusters in period three has b
performed by Shimada and Kikuchi@17#. However, the
simple criterium for instabilitydQ/dCuC

*
.1 does not apply

for H5^ f &.
Constant coupling functions may also occur in GCM sy

tems with different cluster sizes, that is the case of a GC
possessing dispersion global couplingH5Dx and displaying
two clusters with any partition$p,12p%, as seen in Fig. 1~b!.
Figure 5 shows the associated functionQDx with fixed e as a
function of the constant driveC for several values of the
fraction p. There exist a critical fractionpc50.25 below
which only one solution corresponding to one stationa
cluster, i.e., synchronization, can appear in the GCM syst
Above this critical fraction, two states, each consisting
two clusters in period two, are additionally predicted by t
solutionsC5C* of QDx5C. These solutions emerge as
pair: one solution is always unstable sincedQH /dCuC

*
.1

there, and the other is the one two-cluster, period-two col
tive state with constantDx that is actually observed in simu
lations on the corresponding GCM system. For the fract
pc50.25, there is a two-cluster, period-two solutionQDx
5C* 50.125 that is marginally stable.

FIG. 5. The associated coupling functionQDx vs C for different
values of the fractionp. The critical fraction ispc50.25. Intersec-
tions with the diagonal give the solutionsC* . Solutions for which
dQ/dCuC

*
.1 are unstable.
4-6
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V. CONCLUSIONS

Most studies on GCM lattices and other globally coup
systems have assumed mean field coupling. However, o
forms of global coupling may be relevant in some situatio
We have analyzed, in a general framework, the cluste
behavior in GCM systems subjected to permutable glo
coupling functions by considering the dynamics of the co
pling functions.

We have shown that different GCM systems can be r
resented by the orbits of their coupling functions on a co
mon space. For simplicity, only collective states in GC
systems consisting of two clusters in period two were c
sidered. We have shown that the functional form of the g
bal coupling in a GCM system determines the periodicity
its motion and the possible distributions of elements am
the clusters. The existence of a well defined interval of p
sible partitions among two clusters, out of which no clust
emerge in the system, has been observed experimen
@15#. In experimental or natural situations where cluster
occurs, the specific functional form of the coupling is
general unknown. The present study may be useful to ob
insight into the acting global coupling function in practic
situations.

We have employed a previously introduced analogy
tween a GCM system and a single externally driven map@11#
in order to give a unified interpretation of the observed cl
tering behavior of the GCM systems considered in this
ticle. A periodically driven map with local periodic window
can display multiple asymptotic periodic responses that
similar to cluster orbits in a GCM system with permutableH.
This analogy implies that dynamical clustering can occur
any GCM system with a permutable coupling function a
periodic windows in the local dynamics. The presence
windows of stable periodic orbits in the local map is ess
tial for the emergence of clusters. In fact, no clustering
observed in a GCM system if the local maps do not ha
periodic windows@18#, what is observed instead is synchr
nization or nontrivial collective behavior, i.e., an order
temporal evolution of statistical quantities coexisting w
local chaos.

The associated coupling function derived from the driv
map analogy is particularly simple to use in the prediction
clustered states in GCM systems with two equal size clus
and exhibiting constant global couplingH5C. The associ-
ated coupling functionQH can be directly constructed from
the bifurcation diagram of the steadily driven map. The cl
ter states are obtained from the solutions of Eq.~20! and can
be represented graphically in a simple way. Although E
~20! has been used for the case of two clusters in period t
it can also be applied to find GCM states consisting ofK
equal size clusters in periodK. In addition, the associate
coupling functionQH carries information about the stabilit
of the predicted two-cluster states. In particular, for the fa
ily of coupling function satisfying property~A9!, the stability
condition of clustered states in a GCM with constantH
5C* is directly given by the slopedQH /dCuC

*
. The ex-

ample of a GCM system with dispersion coupling functi
H5Dx reveals that a constant coupling can also be ma
03622
er
.
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n
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tained by clusters of different sizes. Our method based
Eq. ~20! also predicts successfully the cluster states in th
situations.

The driven map analogy suggests that the emergenc
clusters should be a common phenomenon that can be
pected in various dynamical systems formed by globally
teracting elements possessing stable periodic orbits on s
parameter range of their individual dynamics. The examp
presented here show that progress in the understanding o
collective behavior of globally coupled systems can
achieved by investigating their relation to a driven oscillat
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APPENDIX: ON THE RELATION BETWEEN STABILITY
AND THE ASSOCIATED COUPLED FUNCTION

Consider a general GCM system with any global perm
able coupling function. Suppose that the system reache
state consisting of two clusters. Then the dynamics of
system reduces to two coupled maps Eqs.~10!–~11!, i.e.,

x t11~1!5~12e! f „x t~1!…1eH„x t~1!,x t~2!,p…

5F„x t~1!,x t~2!…,

x t11~2!5~12e! f „x t~2!…1eH„x t~1!,x t~2!,p…

5G„x t~1!,x t~2!…. ~A1!

If the two clusters are in period-two orbits, the stability
this collective state in the GCM is given by the eigenvalu
of the product of Jacobian matrices

J5J1J25)
i 51

2 S ]F

]x i~1!

]F

]x i~2!

]G

]x i~1!

]G

]x i~2!

D . ~A2!

If the two clusters move out of phase, the asympto
state of the GCM can be described by the two orb
x t(1)[@x1(1),x2(1)#5@a,b# and x t(2)[@x1(2),x2(2)#
5@b,a#, which satisfy

b5~12e! f ~a!1eH~a,b,p!,

a5~12e! f ~b!1eH~a,b,p!. ~A3!

For the local dynamicsf (x)512rx2, one gets

J15S 22~12e!ra1eHa eHb

eHa 22~12e!rb1eHb

D ,

~A4!
4-7
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J25S 22~12e!rb1eHb eHa

eHb 22~12e!ra1eHa

D ,

~A5!

where

Ha[
]H„x t~1!,x t~2!…

]x t~1!
U

x t(1)5a,x t(2)5b

5
]H„x t~1!,x t~2!…

]x t~2!
U

x t(1)5b,x t(2)5a

, ~A6!

and

Hb[
]H„x t~1!,x t~2!…

]x t~2!
U

x t(1)5a,x t(2)5b

5
]H„x t~1!,x t~2!…

]x t~1!
U

x t(1)5b,x t(2)5a

. ~A7!

Consider now the dispersion coupling function, Eq.~4!. This
coupling belongs to the family of functions ofN variables

H~x1 ,x2 , . . . ,xN!5(
i 51

N

he~xi2^x&!, ~A8!

where he is any even function of its argument. It can b
straightforwardly shown that this family of functions po
sesses the property

(
i 51

N
]H

]xi
50. ~A9!

Therefore, in a two-cluster state, anyH in this family of
global coupling functions satisfies

]H„x t~1!,x t~2!…

]x t~1!
1

]H„x t~1!,x t~2!…

]x t~2!
50. ~A10!

If the two-clusters evolve out of phase with respect to e
other, and additionally the GCM has a couplingH with prop-
erty ~A9!, then the two eigenvalues of the matrixJ in Eq.
~A2! become identical and their value is

l52r e~e21!~aHb1bHa!14r 2ab~e21!2. ~A11!

The stability criterion of this state is given by the modulus
the eigenvaluel, that is, ulu.1 (ulu,1) implies that the
state is unstable~stable!. The valuesa andb are, respectively,
the values ofa andb at the intersection of the functionQDx
with the diagonal in Fig. 4.

Let us analyze the relationship between the eigenvalul
and the derivativedQDx /dC at the intersection points with
the diagonal in Fig. 4 or Fig. 5. In general,

dQ

dC
5

]Q

]a

]a

]C
1

]Q

]b

]b

]C
, ~A12!
03622
h

f

where

a5
211R

2r ~e21!
, ~A13!

b5
212R

2r ~e21!
, ~A14!

and

R5~2324r e2C14r eC14r 28r e14r e2!1/2.
~A15!

Since

]a

]C
52

]b

]C
5

1

2r ~e21!

]R

]C
52

e

R
, ~A16!

then

dQ

dC
52

e

R S ]Q

]a
2

]Q

]b D . ~A17!

Since QDx has the same functional form asH5Dx, then
QDx also satisfies property~A10!, that is,

]QDx

]a
52

]QDx

b
, ~A18!

and therefore

dQDx

dC
52

2e

R

]QDx

]a
. ~A19!

Let C5C* be a value ofC corresponding to the intersectio
of QDx with the diagonal in Fig. 4. Thena(C* )5a and
b(C* )5b; andQDx(C* )5H(a,b), which gives

dQDx

dC U
C

*

52
2e

R
Ha . ~A20!

Using the fact thatHa52Hb from Eq.~A10!, the eigenvalue
l becomes

l52r e~e21!Ha~b2a!14r 2ab~e21!2. ~A21!

Equation~A13! and~A14! with C5C* give the valuesa and
b, respectively. Then, substitution of these values andHa
from Eq. ~A20! in Eq. ~A21! yields

l5R2S dQDx

dC U
C

*

21D 11. ~A22!

Therefore, the condition dQ/dCuC .1 implies that

*

4-8
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ulu.1, and thus the two-cluster, period-two solutio
with C* 50.07 given by the intersection ofQDx with the
diagonal in Fig. 4 is unstable. Similarly, the solutionsC* of
QDx5C for the different curves in Fig. 5 for which
ys

.E

nd

03622
dQ/dCuC
*
.1, are unstable.

Note that the above stability result forH5Dx is also
valid for any global coupling function satisfying proper
~A9!.
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